support@kaust.edu.sa
+966 (12) 808-3463
logo-black
  • Home
  • People
    • Current
    • Alumni
    • Visiting Students
  • Research
  • Publications
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Data
  • News
  • Contact us
Hydrology, Agriculture and Land Observation
breadcrumb-bg

A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments

  1. Home
  2. Publications
  3. 2020
  • Clear filters

A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments

by B. Aragon, k. Johansen, S. Parkes, Y. Malbéteau, S. Al-Mashharawi, T. Al-Amoudi, C.F. Andrade, D. Turner, Arko Lucieer, M.F. McCabe
Year: 2020 DOI: 10.3390/s20113316

Extra Information

Sensors 2020, Vol. 20, Issue 11, (2020)

Abstract

​Thermal infrared cameras provide unique information on surface temperature that can benefit a range of environmental, industrial and agricultural applications. However, the use of uncooled thermal cameras for field and unmanned aerial vehicle (UAV) based data collection is often hampered by vignette effects, sensor drift, ambient temperature influences and measurement bias. Here, we develop and apply an ambient temperature-dependent radiometric calibration function that is evaluated against three thermal infrared sensors (Apogee SI-11(Apogee Electronics, Santa Monica, CA, USA), FLIR A655sc (FLIR Systems, Wilsonville, OR, USA), TeAx 640 (TeAx Technology, Wilnsdorf, Germany)). Upon calibration, all systems demonstrated significant improvement in measured surface temperatures when compared against a temperature modulated black body target. The laboratory calibration process used a series of calibrated resistance temperature detectors to measure the temperature of a black body at different ambient temperatures to derive calibration equations for the thermal data acquired by the three sensors. As a point-collecting device, the Apogee sensor was corrected for sensor bias and ambient temperature influences. For the 2D thermal cameras, each pixel was calibrated independently, with results showing that measurement bias and vignette effects were greatly reduced for the FLIR A655sc (from a root mean squared error (RMSE) of 6.219 to 0.815 degrees Celsius (℃)) and TeAx 640 (from an RMSE of 3.438 to 1.013 ℃) cameras. This relatively straightforward approach for the radiometric calibration of infrared thermal sensors can enable more accurate surface temperature retrievals to support field and UAV-based data collection efforts.

Keywords

thermal infrared camera calibration vignetting UAV agricultural monitoring Apogee SI-111 FLIR A655sc TeAx 640 Tau 2 RPAS
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • matthew.mccabe@kaust.edu.sa
  • hydrology@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

Quick links

  • Data
  • Contact us

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...